Reduction Techniques for Model Checking and Learning in MDPs

Author:

Bharadwaj Suda1,Le Roux Stephane2,Perez Guillermo2,Topcu Ufuk1

Affiliation:

1. The University of Texas at Austin

2. Universite libre de Bruxelles

Abstract

Omega-regular objectives in Markov decision processes (MDPs) reduce to reachability: find a policy which maximizes the probability of reaching a target set of states. Given an MDP, an initial distribution, and a target set of states, such a policy can be computed by most probabilistic model checking tools. If the MDP is only partially specified, i.e., some prob- abilities are unknown, then model-learning techniques can be used to statistically approximate the probabilities and enable the computation of the de- sired policy. For fully specified MDPs, reducing the size of the MDP translates into faster model checking; for partially specified MDPs, into faster learning. We provide reduction techniques that al- low us to remove irrelevant transition probabilities: transition probabilities (known, or to be learned) that do not influence the maximal reachability probability. Among other applications, these reductions can be seen as a pre-processing of MDPs before model checking or as a way to reduce the number of experiments required to obtain a good approximation of an unknown MDP.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph-Based Reductions for Parametric and Weighted MDPs;Automated Technology for Verification and Analysis;2023

2. Fuel in Markov Decision Processes (FiMDP): A Practical Approach to Consumption;Formal Methods;2021

3. Are Parametric Markov Chains Monotonic?;Automated Technology for Verification and Analysis;2019

4. The Complexity of Graph-Based Reductions for Reachability in Markov Decision Processes;Lecture Notes in Computer Science;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3