Diverse Weighted Bipartite b-Matching

Author:

Ahmed Faez1,Dickerson John P.2,Fuge Mark1

Affiliation:

1. Department of Mechanical Engineering, University of Maryland

2. Computer Science Department, University of Maryland

Abstract

Bipartite matching, where agents on one side of a market are matched to agents or items on the other, is a classical problem in computer science and economics, with widespread application in healthcare, education, advertising, and general resource allocation. A practitioner's goal is typically to maximize a matching market's economic efficiency, possibly subject to some fairness requirements that promote equal access to resources. A natural balancing act exists between fairness and efficiency in matching markets, and has been the subject of much research.In this paper, we study a complementary goal---balancing diversity and efficiency---in a generalization of bipartite matching where agents on one side of the market can be matched to sets of agents on the other. Adapting a classical definition of the diversity of a set, we propose a quadratic programming-based approach to solving a submodular minimization problem that balances diversity and total weight of the solution. We also provide a scalable greedy algorithm with theoretical performance bounds. We then define the price of diversity, a measure of the efficiency loss due to enforcing diversity, and give a worst-case theoretical bound. Finally, we demonstrate the efficacy of our methods on three real-world datasets, and show that the price of diversity is not bad in practice. Our code is publicly accessible for further research.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A neural algorithm for computing bipartite matchings;Proceedings of the National Academy of Sciences;2024-09-03

2. Ranking with Slot Constraints;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Two-Sided Capacitated Submodular Maximization in Gig Platforms;Web and Internet Economics;2023-12-31

4. Exchange Networks with Stochastic Matching;Games;2022-12-27

5. Clustered Vehicular Federated Learning: Process and Optimization;IEEE Transactions on Intelligent Transportation Systems;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3