Hierarchical Multi-Scale Gaussian Transformer for Stock Movement Prediction

Author:

Ding Qianggang12,Wu Sifan1,Sun Hao3,Guo Jiadong2,Guo Jian2

Affiliation:

1. Tsinghua University

2. Peng Cheng Laboratory

3. The Chinese University of Hong Kong

Abstract

Predicting the price movement of finance securities like stocks is an important but challenging task, due to the uncertainty of financial markets. In this paper, we propose a novel approach based on the Transformer to tackle the stock movement prediction task. Furthermore, we present several enhancements for the proposed basic Transformer. Firstly, we propose a Multi-Scale Gaussian Prior to enhance the locality of Transformer. Secondly, we develop an Orthogonal Regularization to avoid learning redundant heads in the multi-head self-attention mechanism. Thirdly, we design a Trading Gap Splitter for Transformer to learn hierarchical features of high-frequency finance data. Compared with other popular recurrent neural networks such as LSTM, the proposed method has the advantage to mine extremely long-term dependencies from financial time series. Experimental results show our proposed models outperform several competitive methods in stock price prediction tasks for the NASDAQ exchange market and the China A-shares market.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3