Towards Explainable Conversational Recommendation

Author:

Chen Zhongxia12,Wang Xiting2,Xie Xing2,Parsana Mehul3,Soni Akshay3,Ao Xiang4,Chen Enhong1

Affiliation:

1. School of Computer Science and Technology, University of Science and Technology of China

2. Microsoft Research Asia

3. Microsoft Bing Ads

4. Institute of Computing Technology, Chinese Academy of Sciences

Abstract

Recent studies have shown that both accuracy and explainability are important for recommendation. In this paper, we introduce explainable conversational recommendation, which enables incremental improvement of both recommendation accuracy and explanation quality through multi-turn user-model conversation. We show how the problem can be formulated, and design an incremental multi-task learning framework that enables tight collaboration between recommendation prediction, explanation generation, and user feedback integration. We also propose a multi-view feedback integration method to enable effective incremental model update. Empirical results demonstrate that our model not only consistently improves the recommendation accuracy but also generates explanations that fit user interests reflected in the feedbacks.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3