Online Learning from Capricious Data Streams: A Generative Approach

Author:

He Yi1,Wu Baijun2,Wu Di3,Beyazit Ege1,Chen Sheng1,Wu Xindong1

Affiliation:

1. School of Computing and Informatics, University of Louisiana at Lafayette, USA

2. School of Computing and Informatics, University of Louisiana at Lafayette. USA

3. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, China

Abstract

Learning with streaming data has received extensive attention during the past few years. Existing approaches assume the feature space is fixed or changes by following explicit regularities, limiting their applicability in dynamic environments where the data streams are described by an arbitrarily varying feature space. To handle such capricious data streams, we in this paper develop a novel algorithm, named OCDS (Online learning from Capricious Data Streams), which does not make any assumption on feature space dynamics. OCDS trains a learner on a universal feature space that establishes relationships between old and new features, so that the patterns learned in the old feature space can be used in the new feature space. Specifically, the universal feature space is constructed by leveraging the relatednesses among features. We propose a generative graphical model to model the construction process, and show that learning from the universal feature space can effectively improve performance with theoretical analysis. The experimental results demonstrate that OCDS achieves conspicuous performance on synthetic and real datasets.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online Feature Selection With Varying Feature Spaces;IEEE Transactions on Knowledge and Data Engineering;2024-09

2. Online learning from capricious data streams via shared and new feature spaces;Applied Intelligence;2024-07-16

3. Data stream classification in dynamic feature space using feature mapping;The Journal of Supercomputing;2024-02-07

4. Online Change Point Detection in Open Feature Spaces;2023 IEEE International Conference on Data Mining Workshops (ICDMW);2023-12-04

5. Learning framework based on ER Rule for data streams with generalized feature spaces;Information Sciences;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3