Additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics

Author:

Dobrzański L.A.1,Dobrzański L.B.1,Dobrzańska-Danikiewicz A.D.2

Affiliation:

1. Medical and Dental Engineering Center for Research, Design and Production ASKLEPIOS, ul. Królowej Bony 13D, 44-100 Gliwice, Poland

2. Department of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland

Abstract

Purpose: The paper is a comprehensive review of the literature on additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics. Design/methodology/approach: Extensive literature studies on conventional powder engineering technologies have been carried out. By using knowledge engineering methods, development perspectives of individual technologies were indicated. Findings: The additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics as the advanced digital production (ADP) technologies are located in the two-quarters of the dendrological matrix of technologies "wide-stretching oak" and "rooted dwarf mountain pine" respectively. It proves their highest possible potential and attractiveness, as well as their fully exploited attractiveness or substantial development opportunities in this respect. Originality/value: According to augmented holistic Industry 4.0 model, many materials processing technologies and among them additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics are becoming very important among product manufacturing technologies. They are an essential part not only of powder engineering but also of the manufacturing development according to the concept of Industry 4.0.

Publisher

Index Copernicus

Subject

General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3