Affiliation:
1. Uniwersytet Łódzki / University of Lodz Wydział Ekonomiczno-Socjologiczny / Faculty of Economics and Sociology Instytut Statystyki i Demografii / Institute of Statistics and Demography
Abstract
The work of Jerzy Spława-Neyman related to the estimation and the statistical hypotheses verification theories (developed in cooperation with Egon Pearson) as well as his mathematical analysis of the sampling theory (which pointed to the unjustified application of target sampling instead of random sampling) all contributed to the fast progress of mathematical statistics and the adoption of technical sampling in the past century. We are remembering this distinguished statistician on his 40th death anniversary, which falls in 2021. The aim of the article is to present Spława-Neyman’s scientific achievements, mainly from the period of his residence in Poland (1921–1938). His contemporary body of work continues to inspire ever-new generations of statisticians all around the world.
Publisher
Główny Urząd Statystyczny
Subject
General Earth and Planetary Sciences
Reference24 articles.
1. Bednarski, T. (2013). Rola Jerzego Spławy-Neymana w kształtowaniu metod statystycznej analizy przyczynowości. W: Z. Rusnak, E. Mazurek (red.), Społeczno-gospodarcze aspekty statystyki (s. 11–18). Uniwersytet Ekonomiczny we Wrocławiu. https://www.dbc.wroc.pl/Content/28780/PDF/Bednarski_Rola_Jerzego_Splawy_Neymana_w_Ksztaltowanie_2013.pdf .
2. Inglot, T., Ledwina, T. (1996). Asymptotic Optimality of Data-Driven Neyman’s Tests for Uniformality. The Annals of Statistics, 24(5), 1982–2019.
3. Inglot, T., Ledwina, T. (2001a). Asymptotic Optimality of Data Driven Smooth Tests for Location- Scale Family. Sankhya, Series A, 63(1), 41–71.
4. Inglot, T., Ledwina, T. (2001b). Intermediate Approach to Comparison of Some Goodness-of-Fit Tests. Annals of the Institute of Statistical Mathematics, 53(4), 810–834. https://doi.org/10.1023/A:1014669423096 .
5. Inglot, T., Ledwina, T. (2004). On consistent minimax distinguishability and intermediate efficiency of Cramér-von Mises test. Journal of Statistical Planning and Inference, 124(2), 453–474. https://doi.org/10.1016/j.jspi.2003.03.001 .