Intracellular Siderophore Detection in an Egyptian, Cobalt-Treated F. solani Isolate Using SEM-EDX with Reference to its Tolerance

Author:

Rasha Farrag M.1

Affiliation:

1. Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Riyadh, KSA The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt

Abstract

An Egyptian, plant pathogenic Fusarium solani isolate was grown on cobalt concentrations of 0, 50, 200, 500, 800, and 1000 ppm. The isolate survived concentrations up to 800 ppm, however failed to grow at 1000 ppm. Morphology and elemental analysis of the isolate under the investigated Co concentrations were studied using Scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis (EDX). The isolate reserved its morphology up to a concentration of 200 ppm. Morphological distortions were dramatic at 500 and 800 ppm. EDX detected Co uptake through the hyphae, microconidia, macroconidia, and chlamydospores. Iron, calcium, and potassium were also detected. EDX results showed a linear relationship between Co% and Fe% up to a concentration of 500 ppm reflecting the possible ability of the isolate to synthesize intracellular siderophores storing iron and their release out of the vacuoles. The participation of such siderophores in conferring tolerance against cobalt is discussed. At 800 ppm, the % of Fe was greatly reduced with an accompanying increase in morphological distortions and absence of microconidia. Increasing the implicated cobalt concentrations resulted in increasing the percentages of the chelated cobalt reflecting the possible implication of the cell wall as well as extracellular siderophores in the uptake of cobalt. The current results recommend the absence of cobalt in any control regime taken to combat the investigated F. solani isolate and highlights the accomplishment of biochemical, ultrastructural, and molecular studies on such isolate to approve the production of siderophores and the role of cell wall in cobalt uptake.

Publisher

Polish Society of Microbiologists

Subject

Microbiology (medical),Applied Microbiology and Biotechnology,General Medicine,Microbiology

Reference52 articles.

1. Abdul-Tawab K.I. and Z.T. Maqsood. 2007. Critical behavior of Iron (III) with a typical catecholate siderophore. Sci. Iran 14:106–111.

2. Akthar N.M.D., K.S. Sastry and P.M. Mohan. 1996. Mechanism of metal ion biosorption by fungal biomass. Biometals 9:21-28.

3. Al-Yemeni M.N. and A.R. Hashem. 2006. Heavy Metals and Microbial Analysis of Soil Samples Collected from Aramco Gulf Operation Company (AGOC), Al-Khafji, Saudi Arabia. S. J. Biologic. Sci. 13:129-33.

4. Anahida S., S. Yaghmaei and Z. Ghobadinejad. 2011. Heavy metal tolerance of fungi. Scientia Iranica C 18:502-508.

5. Andreini C., I. Bertini, G. Cavallaro, G.L. Holliday and J.M. Thornton. 2008. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13:1205-1218.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3