Numerical modelling of SS316L powder flowability for laser powder-bed fusion

Author:

Bouabbou A.1ORCID,Vaudreuil S.1

Affiliation:

1. Euro-Mediterranean University of Fez, Euromed Polytechnic School (EPS), Fès, Morocco

Abstract

This work aims to improve the powder-bed spreading process for laser powder bed fusion additive manufacturing by gaining a greater understanding of metal powder flowability through numerical modelling and in-situ experimentation.Using the Discrete Element Method (DEM) to study the flowability of the powder and its intrinsic properties. A high-fidelity particle-scale model was developed to capture the dynamics of metal particle interactions in a virtual Hall flow meter based on a modified Beverloo law. The results are validated experimentally using the Hall flow static powder characterisation technique.For SS316L powder alloy with the hall-value of 29s/50g and with an angle of repose (AOR) of 32, the modelled powder that exhibited the same flow behaviour was found using 0.5 for both rolling and sliding coefficients resulting in simulated Hall value of 28.55s/50g with a simulated flow rate of 0.571 g/s, which is validated by AOR of the simulated powder [31.2-32.6]. However, rolling friction had minimal effect on the mass flow rate but increased the angle of repose. Sliding friction significantly decreased the mass flow rate and increased AOR.DEM is an ideal method to study flowability. However, there are certain constraints imposed on the computational power by a number of simulated particles and simulation time-step. Future research may involve investigating other dynamic flowability characterisation techniques.Enabling a better understanding of powder particle flow at a micro-scale by modelling powder flowability. This leads to simulating a more realistic powder bed and improving the powder spreading process, leading to better AM parts quality.This paper provides a unique approach for modelling the flowability of SS316L powder using a Beverloo law-based design of the Hall flow meter. This will improve the modelling of the spreading process needed for metal 3D printing.

Publisher

Index Copernicus

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3