A comprehensive review of polymer materials and selective laser sintering technology for 3D printing

Author:

Jabri F.E.1ORCID,Ouballouch A.2,Lasri L.3,El Alaiji R.1

Affiliation:

1. Laboratory of Innovative Technologies (LTI), Abdelmalek Essaadi University, ENSA, Road Ziaten Km 10, Tangier Principale, BP: 1818 - Tangier, Tangier 90060, Morocco

2. Laboratory of Mechanics, Production and Industrial Engineering (LMPGI), Hassan II University, EST, Road El Jadida Km 7, BP: 8012 - Oasis Casablanca, Casablanca, Morocco

3. Systems Engineering and Innovation Laboratory, Mechanics and Systems Engineering Team, Moulay Ismail University, ENSAM, Marjane 2, B.P. 15290 - Al Mansor, Meknes 50000, Morocco

Abstract

This review analyses different approaches used to study selective laser sintering (SLS) technology of polymer materials. These main approaches concern: thermal behaviour, fatigue and surface roughness.Regarding the first behaviour, researchers extensively studied the impact of process parameters, including scan speed, laser, power and laser energy density, on the thermal behaviour of 3D printed parts. Numerical and experimental analyses are used to conduct process parameter evaluations.Laser power and scan speed are the most significant parameters of the laser energy density. For the second, according to test protocols and quantitative analysis performed, the authors concluded that the combination of small and large laser energy density particles generates higher sintering and better fatigue resistance. Moreover, tensile analysis in different environments showed that testing in the water decreased the fatigue life of polymer samples. The influence of process parameters on the mechanical properties and surface roughness of 3D parts is also analysed. In addition, the investigators found that the additives increase the surface roughness of 3D printed parts.This review shows that researchers can focus on creating a combination of these approaches to expand the use of this process for industrial part production.All these investigations have made it possible to determine the optimal process conditions to ensure higher quality, optimal surface quality and better fatigue strength.

Publisher

Index Copernicus

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3