Characteristics of polymer ring springs

Author:

Wróbel G.1ORCID,Kaczmarczyk J.1

Affiliation:

1. Department of Theoretical and Applied Mechanics, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland

Abstract

The article presents a procedure for modelling and analysing a model system of ring and cone springs, in their particular material solution, using selected polymeric materials.Subsequently, physical and mathematical models were presented, allowing the formulation of general design assumptions for the target products. The material models made were subjected to experimental tests to evaluate the correctness of the analytical models. Commercially available types of pure polyethylene and polypropylene were used as materials for machined parts based on catalogue properties. The material models were tested under variable static and periodically varying dynamic loads. The constructed finite element model was subjected to verification of the compatibility of the results of the numerical analysis with the results of simple experiments in order to assess the correctness of the model.The correctness and adequacy of the computational model, confirmed in terms of simple load cases, will allow extending the scope of numerical simulation studies to systems that differ in material and geometric design features.The performed studies have proved the advisability of using polymeric materials in the area of the design of ring springs. It allows for the significant expansion of the area of static and dynamic characteristics, which opens new fields of application for similar solutions. Due to the developed and verified numerical model, it becomes possible to analyse similar structural elements in terms of materials and geometry. In particular, interesting results can be expected if the research area is extended to composite materials. Also, the specific properties of plastics make it possible to expand the rationale field for similar systems. The prices of the tested materials and, above all, the cost of processing in the presented structural solutions are competitive in cases where it is possible to obtain similar technical characteristics as steel structures. In addition, a wide range of design requirements can be met exclusively by polymer or composite springs. The tools presented here open up new possibilities for computer-aided design processes.

Publisher

Index Copernicus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3