Modelling of travel behaviour of students using artificial intelligence

Author:

Alex Anu P.1,Manju V. S.1,Isaac Kuncheria P.2

Affiliation:

1. College of Engineering Trivandrum, Kerala, India

2. Hindustan Institute of Technology and Science, Chennai, India

Abstract

Travel demand models are required by transportation planners to predict the travel behaviour of people with different socio-economic characteristics. Travel behaviour of students act as an essential component of travel demand modelling. This behaviour is reflected in the educational activity travel pattern, the timing, sequence and mode of travel of students. Roads in the vicinity of schools are adversely affected during the school opening and closing hours. It enhances the traffic congestion, emission and safety problems around schools. It is necessary to improve the safety of school going children by understanding the present travel behaviour and to develop efficient sustainable traffic management measures to reduce congestion in the vicinity of schools. It is possible only if the travel behaviour of educational activities are studied. This travel behaviour is complex in nature and lot of uncertainty exists. Selection of modelling technique is very important for modelling the complex travel behaviour of students. This leads to the importance of application of artificial intelligence (AI) techniques in this area. AI techniques are highly developed in twenty first century due to the advancements in computer, big data and theoretical understanding. It is proved in the literature that these techniques are suitable for modelling the human behaviour. However, it has not been used in behaviourally oriented activity based modelling. This study is aimed to develop a model system to predict the daily travel behaviour of students using artificial intelligence technique, ANN. These ANN models were then compared with the conventional econometric models developed. It was observed that artificial intelligence models provide better results than econometric models in predicting the activity-travel behaviour of students. These models were further applied to study the variation in activity-travel behaviour, if short term travel-demand management measures like promoting walking for educational activities are implemented. Thus the study established that artificial intelligence can replace the conventional econometric methods for modelling the activity-travel behaviour of students. It can also be used for analysing the impact of short term travel demand management measures.

Publisher

Index Copernicus

Subject

Transportation,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3