A study on magnetic field assisted laser percussion drilling and its effect on surface integrity

Author:

Balamurugan S.1,Bala Manikandan C.2,Balamurugan P.2

Affiliation:

1. AAA College of Engineering & Technolgy, Chennai, India

2. Mepco Schkenk Engineerring College, Sivakasi, India

Abstract

Purpose: of this paper is to reduce the taper angle and surface roughness of the laser drilled hole on Aluminium alloy with the assistance of magnetic field. At lower laser powers, able to achieve higher material removal rate in drilling with reduced taper angle and roughness. Design/methodology/approach: Aluminium alloy is a highly reflective material, while laser drilling it ejects plumes, which makes the drilling unreliable. The plume generated due to this action causes deteriorating effects over the work piece as such affecting surface textures. Removal of plume is the major consideration in laser machining process, especially in laser assisted drilling. The plume is a form of cluster of ions having charges in it. Due to the magnetic field input, the ions line the path along the lines of force of magnets. Thus, the ion cloud can be cleared at the localized plane, where the subsequent laser drilling going to be happens, leads to reduced plume thereby reduces the taper angle and surface roughness. Findings: The defect of percussion laser drilling that is barrelling effect in the drilled hole was reduced with the assistance of magnetic field setup. For the laser energy of 90 mJ, the magnetic assisted laser drilling shows better improvement in the material removal rate of 64.5%, the profile error (spatter height) was reduced to 45% and the taper angle of the drilled hole also reduced by 16.3%. The results confirmed the fact that, the Lorentz force confined the plume particle to be raised upwards and circulated outwards to the sidewall from the centre of the laser beam. This expansion of laser induced plasma plume, improved the material removal rate of the hole. Research limitations/implications: Laser drilling was carried out by a constant magnetic field and the parameters like material removal rate, taper angle, profile error, surface roughness were studied. In the future work, these parameters were studied with the application of varying magnetic field. Practical implications: As a result of the work, laser drilling was carried out on turbine blades or complex shapes for retention properties, with reduced taper hole and surface roughness, thereby improving the efficiency of the systems. Originality/value: The novelty of the work is providing magnetic flux for the laser drilling process, which improves the process parameters. The incorporation of magnetic field to the laser drill needs a cost less setup, which can ensure reliable improvement in the material removal rate, reduction in taper angle and profile error.

Publisher

Index Copernicus

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3