Influence of Temperature on the Properties of Cellulose Iβ based on Molecular Dynamics Simulations

Author:

Huang Shuang1,Wu Xin2,Li Peixing1

Affiliation:

1. China, Shanghai, Shanghai University of Engineering Science, College of Mechanical and Automotive Engineering

2. China, Wuxi, Jiangnan University, School of Design

Abstract

Natural plants, such as cotton and linen, are rich in cellulose Iβ. The properties of cellulose Iβ under different temperatures was studied using molecular dynamics simulations. Firstly, the crystal of cellulose Iβ was built. To verify the model, the X-ray fibre diffraction and thermal expansion coefficients were calculated, which were found to agree with experimental results. Then the Mulliken population of the bonds were computed and the movement of the centre chain and hydrogen bonds studied over the range 300-550 K using a PCFF force field. The results of the Mulliken population reveal the three steps of pyrolysis. The higher the temperature is, the more intensely the movement of the centre chain is. However, the impact of temperature on the movement of the centre chain is not obvious. From 300 K to 550 K, the total number of hydrogen bonds decreased by only 20%. Moreocer, the rupture of intrachain hydrogen bonds and the formation of interchain hydrogen bonds at 400 K ~ 450 K temperature occurred.

Publisher

Walter de Gruyter GmbH

Subject

Industrial and Manufacturing Engineering,General Environmental Science,Materials Science (miscellaneous),Business and International Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3