Comparison of methods used for filling partially unobserved contingency tables

Author:

Kot Michał1,Kamiński Bogumił1

Affiliation:

1. SGH Warsaw School of Economics Institute of Econometrics Decision Analysis and Support Unit

Abstract

In this article, we investigate contingency tables where the entries containing small counts are unknown for data privacy reasons. We propose and test two competitive methods for estimating the unknown entries: our modification of the Iterative Proportional Fitting Procedure (IPFP), and one of the Monte Carlo Markov Chain methods called Shake-and-Bake. We use simulation experiments to test these methods in terms of time complexity and the accuracy of searching the space of feasible solutions. To simplify the estimation procedure, we propose to pre-process partially unknown contingency tables with simple heuristics and dimensionality-reduction techniques to find and fill all trivial entries. Our results demonstrate that if the number of missing cells is not very large, the pre-processing is often enough to find fillings for the unknown values in contingency tables. In the cases where simple heuristics are insufficient, the Shake-and-Bake technique outperforms the modified IPFP in terms of time complexity and the accuracy of searching the space of feasible solutions.

Publisher

Główny Urząd Statystyczny

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3