The selection of areas for case study research in socio-economic geography with the application of k-means clustering

Author:

Warchalska-Troll Agata1,Warchalski Tomasz2

Affiliation:

1. Instytut Rozwoju Miast i Regionów / Institute of Urban and Regional Development; Uniwersytet Jagielloński w Krakowie / Jagiellonian University in Krakow Instytut Geografii i Gospodarki Przestrzennej / Institute of Geography and Spatial Management

2. Badacz niezależny / Independent researcher

Abstract

The grouping techniques which are known in statistics are rarely used by geographers to select a research area. The aim of the paper is to examine the potential use of the k-means clustering (partitioning) method for the selection of spatial units (here: gminas, i.e. the lowest administrative units in Poland) for case studies in socio-economic geography. We explored this topic by solving a practical problem consisting in the optimal designation of gminas for in-depth research on the interaction between nature protection and local and regional development in the Polish Carpathians. Particular attention was devoted to defining an appropriate number of clusters by means of the elbow method as well as the pseudo-F statistic (the Calinski-Harabasz index). The data for the analysis were mostly provided by Statistics Poland and covered the period of 1999–2012. The multi-stage procedure resulted in the selection of the following gminas: Cisna, Lipinki, Ochotnica Dolna, Sękowa, Szczawnica and Zawoja. The example described in the paper demonstrates that the k-means technique, despite its certain deficiencies, may prove useful for creating classifications and typologies leading to the selection of case study sites, as it is relatively time-effective, intuitive and available in opensource software. At the same time, due to the complexity of the socio-economic characteristics of the areas, the application of this method in socio-economic geography may require support in terms of the interpretation of the results through the analysis of additional data sources and expert knowledge.

Publisher

Główny Urząd Statystyczny

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3