Experimental study of the solid fouling effect on the air-cooled apparatus characteristics

Author:

Morozyuk Larisa1,Sokolovska-Yefymenko Viktoriia1,Moshkatiuk Andrii1,Hrudka Bohdan1

Affiliation:

1. Odessa National Academy of Food Technologies

Abstract

External fouling on the heat exchange surface of air-cooled apparatus are formed during operation, which leads to a significant increase in energy consumption and deviations from the optimal operating mode of the entire system. This phenomenon is a problem for all energy conversion systems. This paper presents the experimental study results of a complex of a commercial cooled object with real fouling on the air condenser surface. To study the effect of fouling, an experimental bench was developed – a single-stage refrigerating machine that provides cold supply to a thermostatic chamber. Three types of fouling were used: sand, fluff and dust. Fouling were picked from the operating condensers and identical in the type of heat exchange surface to the experimental sample. With a change in the quantitative and qualitative composition of the fouling, the air condenser thermal and aerodynamic characteristics and the energy efficiency of the machine as a whole were determined. The experiment showed that at maximum fouling of the heat exchange surface with sand and fluff, air movement stops. This means that at a certain thickness of sand and fluff layer, an air impermeable dense structure is formed. Dust with the same form of filling the free space for the flow remains permeable to air. Experiments showed that the qualitative composition of the fouling is the main factor that determines the heat exchanger performance. It was found that from the experimental set of fouling, roadside dust has the greatest negative effect on the condenser characteristics and the machine as a whole. The aerodynamic properties of the heat exchanger depend to some extent on the qualitative composition of the fouling. As a conclusion, it was suggested that the process nature of air flow passing through the investigated fouling can be described as gas flows in porous media.

Publisher

University of Applied Sciences in Tarnow, Poland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3