An aviation accident report data-driven approach to scenario design for a centrifuge-based dynamic flight simulator

Author:

Lewkowicz Rafał1ORCID

Affiliation:

1. Wojskowy Instytut Medycyny Lotniczej

Abstract

The use of flight simulators in investigating an aviation incident or accident related to human errors has been identified as an important part of a strategy to improve safety. This study aimed to replicate a real flight of the MiG-29 aircraft using a centrifuge-based dynamic flight simulator and to determine the simulator’s accuracy in recreating in-flight aircraft performance. A 60-second recording of the real flight of the MiG-29 aircraft, captured by the flight data recorder, was chosen for replication in the HTC-07 human training centrifuge simulator. To evaluate how accurately the simulator replicates the performance of the aircraft, the linear accelerations and angular velocities acting on a pilot during the real flight were compared with those during the replication of that flight in the simulator. The fit of these parameters was assessed using the root mean square percentage error (RMSPE) and the correlation coefficient (r). The highest replication accuracy was achieved for the vertical component of the linear acceleration (RMSPE=2068; r=0.98), while the worst result was obtained for the longitudinal component (RMSPE=14205; r=0.31). Inaccuracies were much more pronounced for the angular velocity. The roll angular velocity had the lowest replication error (RMSPE=12640). However, its correlation with the recorded velocity during the real flight was very weak (r=-0.02). Despite some inaccuracies in replicating other components of the acceleration and angular velocity vectors, the HTC-07 simulator seems valuable for investigating aviation incidents or accidents related to human factors.

Publisher

Index Copernicus

Subject

Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3