Affiliation:
1. Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Chair of Biology and Biotechnology, Medical University of Łódź, Poland
Abstract
To overcome limitations in iron acquisition, enterococci have evolved a number of mechanisms to scavenge iron from the host iron-binding proteins – transferrin (TR) and lactoferrin (LF). The aim of this study was to demonstrate the mechanisms by which enterococci utilize human TR and LF bound iron. The study included two strains of Enterococcus faecalis grown in iron-deficient and iron-excess media respectively. The binding activity of both proteins was monitored using proteins labelled with 125I. The uptake of iron by enterococci was determined using 59Fe labelled proteins. Reduction of iron bound to TR and LF was assayed with ferrozine. The proteolytic cleavage of TR and LF was visualized by SDS-polyacrylamide gel electrophoresis. The siderophore activity was measured with chrome azurol S. The study revealed that enterococci use several ways to acquire iron from TR and LF, such as iron chelating siderophores, iron reduction – facilitated iron release, protein degradation – promoted iron release, and receptor mediated capture of the iron-host protein complexes. The broad spectrum of iron acquisition mechanisms used by enterococci may play a significant role in the colonization of the human body and the resulting pathogenicity.
Publisher
Polish Society of Microbiologists
Subject
Microbiology (medical),Applied Microbiology and Biotechnology,General Medicine,Microbiology
Reference34 articles.
1. Brock J.H. and J. Ng. 1983. The effect of desferrixamine on growth of Staphylococcus aureus, Yersinia enterocolitica and Streptococcus faecalis in human serum: uptake of desferrioxamine-bound iron. FEMS Microbiol. Lett. 20: 439–442.
2. Clarke T.E., L.W. Tari and H.J. Vogel. 2001. Structural biology of bacterial iron uptake systems. Curr. Top Med. Chem. 1: 7–30.
3. Csaky T.Z. 1948. On the estimation of bound hydroxylamine in biological materials. Acta Chem. Scand. 2: 450–454.
4. Deneer H.G., V. Healey and I. Boychuk 1995. Reduction of exogenous ferric iron by a surface-associated ferric reductase of Listeria spp. Microbiol. 141: 1985–1992.
5. Drechsel H. and G. Winkelman. 1997. Iron chelation and siderophores, pp. 1–49. In: Winkelman G. and C.J. Carrano (eds). Transition metals in microbial metabolism. Harwood Academic, Amsterdam.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献