Research on AGV positioning method combined with IMU and UWB

Author:

Qiu Jiandong1,Zhang Yang1,Tang Minan2,Ma Panpan1,Ran Jiajia3

Affiliation:

1. School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou China

2. School of Automation Electrical Engineering, Lanzhou Jiaotong University, Lanzhou China

3. School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou, China

Abstract

Aiming at the problem that automated guided vehicle (AGV) is difficult to locate accurately due to the influence of environment and time drift when it works in the indoor intelligent storage system. In this paper, an extended kalman filtering (EKF) framework is designed. In order to make full use of the original ranging values of ultra wideband (UWB) and inertial measurement unit (IMU), the framework realizes the fusion positioning between UWB module and IMU module in a tight coupling manner, so as to ensure that the system can still work when the available base station signal is inaccurate. Firstly, for the problem that the traditional UWB positioning method is easily affected by the non-line of sight (NLOS) error indoors, the calculated positioning coordinate value is unstable. With the help of different NLOS probability distribution curves of different obstacles, the weighted least square method is applied to the UWB positioning method to determine the positioning coordinate value of UWB, which improves the sudden change of AGV positioning coordinate in the static environment. Then the data fusion algorithm is optimized, and the error value of IMU and UWB coordinate is taken as the observation value of EKF, which reduces the influence of cumulative error on IMU positioning results, provides the global optimal estimation of the system optimal state, and improves the fusion positioning accuracy. Finally, the measured data of UWB and IMU systems in indoor complex environment are simulated in MATLAB. The experimental results show that when NLOS signal seriously affects the positioning effect, the UWB and IMU combined positioning system can provide more reliable positioning results than the single IMU positioning system. It improves the positioning accuracy of AGV and provides a new idea for indoor positioning mode.

Publisher

Index Copernicus

Subject

Transportation,Automotive Engineering

Reference24 articles.

1. Ai, H., Li, Y. (2017) Weighted centroid location algorithm based on RSSI ranging filter optimization. Journal of the Computer Engineering and Design,3811(10), 2631-2635.

2. Cao, B., Wang, S. B., Ge, S. R. (2022) Research on positioning strategy and technology of shearer end based on ultra wideband system. Journal of the Coal Science and Technology, 50(03), 257-266.

3. Ding, L., Zhang, Y., Yin, S. C., et al. (2018) Discussion on the development status and trends of my country's logistics and storage industry. Journal of the Hoistingand Conveying Machinery, (4), 69−71

4. Jiang, W., Cao, Z, J., Lu, D, B., et al. (2021) UWB enhanced integrated navigation method under GNSS constraints. Journal of the Railway Transaction, 43(03), 111-119.

5. Jiang, W., Cao, Z. J., Lu, D. B., et al. (2021) UWB enhanced integrated navigation method under GNSS constraints. Journal of the Railway Transaction, 43(03), 111-119.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3