Determination of the optimal parameters of the structure of functional gradient materials using mathematical modelling approaches

Author:

Lyashenko B.A.1,Stotsko Z.A.2,Kuzin O.A.2,Kuzin M.O.3,Mikosianchyk O.A.4

Affiliation:

1. G.S.Pisarenko Institute for Problems of Strength National Academy of Sciences of Ukraine, 2 Timiryazevs’ka str., Kyiv, 01014, Ukraine

2. Lviv National Polytechnic University, 12 Bandera street, Lviv, 79013, Ukraine

3. Lviv branch of Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan, Ukraine, Lviv Scientific and Research Institute of Forensic Expertise, 54 Lipinskogo street, Lviv, 79024, Ukraine

4. National Aviation University, Kosmonavta Komarova 1, Kyiv, 03058, Ukraine

Abstract

Purpose: Functioning of mechanical friction systems largely depends on the characteristics of the structure of their surface layers. By controlling these parameters, it is possible to significantly adjust the reliability and durability of parts under the conditions of contact interaction. Design/methodology/approach: he proposed approach, which is based on the principle of nonlocality of the operational properties of materials, allows determining the optimal microhardness values of the surface layers and the gradient of this parameter, at which the contact durability of friction pair elements significantly increases. Findings: It is established that by adjusting the ratios of the surface strength of materials and its gradient, it is possible to achieve a significant increase in the operational parameters of friction units. Practical implications: The engineering relationship considered in the work allows to establish functional distributions of microhardness in the structure of surface layers, at which their wear reaches minimum values. Originality/value: Mathematical approaches are proposed, which allow determining the parameters of the structure of the surface layers of parts to increase their durability under conditions of friction contact loads.

Publisher

Index Copernicus

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3