Affiliation:
1. Department of Biomolecular Chemistry, Medical University of Łódź, Poland
Abstract
Drug resistance is a well-known phenomenon that occurs when initially responsive to chemotherapy cancer cells become tolerant and elude further effectiveness of anticancer drugs. Based on their mechanism of action, anticancer drugs can be divided into cytotoxic-based agents and target-based agents. An important role among the therapeutics of the second group is played by drugs targeting topoisomerases, nuclear enzymes critical to DNA function and cell survival. These enzymes are cellular targets of several groups of anticancer agents which generate DNA damage in rapidly proliferating cancer cells. Drugs targeting topoisomerase I are mostly analogs of camtothecin, a natural compound isolated from the bark of a tree growing in China. Drugs targeting topoisomerase II are divided into poisons, such as anthracycline antibiotics, whose action is based on intercalation between DNA bases, and catalytic inhibitors that block topoisomerase II at different stages of the catalytic cycle. Unfortunately, chemotherapy is often limited by the induction of drug resistance. Identifying mechanisms that promote drug resistance is critical for the improvement of patient prognosis. Cancer drug resistance is a complex phenomenon that may be influenced by many factors. Here we discuss various mechanisms by which cancer cells can develop resistance to topoisomerase-directed drugs, which include enhanced drug efflux, mutations in topoisomerase genes, hypophosphorylation of topoisomerase II catalytic domain, activation of NF-κB transcription factor and drug inactivation. All these events may lead to the ineffective induction of cancer cell death. Attempts at circumventing drug resistance through the inhibition of cellular efflux pumps, use of silencing RNAs or inhibition of some important mechanisms, which can allow cancer cells to survive therapy, are also presented.
Subject
Infectious Diseases,Microbiology (medical)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献