Affiliation:
1. Dresden University of Technology, Faculty of Mechanical Science and Engineering, Institute of Textile Machinery and High Performance Material Technology, Hohe Straße 6, Dresden, Germany
Abstract
Porosity is an important characteristic of a filter textile, which affects permeability and retention properties. Determination of the inter-yarn and inter-fibre pore sizes of barrier textiles is also required to assess the filter behaviour of these textiles. In this study, a software tool was developed to detect the inter-fibre pore size distribution and pore size intensity of multifilament woven barrier fabrics using cross-section images. Fabrics were chosen according to their fabric construction parameters, such as the fabric index, weft yarn filament fineness and weft yarn structure (flat or textured). Microscopic cross-section images of weft yarns were taken, processed to binary images, and analysed with respect to the pore size distribution, number of pore lengths and pore intensity. It was also analysed how the fabric index, filament cross-section and filament fineness affect the inter-fibre pore lengths and separation level proposed. It was found that weft yarns with wider lengths and lower height showed wider inter-fibre pores. Inter-fibre pores decreased with a decrease in filament fineness. Moreover the separation level proposed deviated from the 90% level depending on the fabric index. This deviation was very small in samples with reduced filament fineness and textured samples. The separation level proposed will be useful to understand the effect of fabric construction parameters to obtain targeted properties regarding inter-fibre and inter-yarn pore size.
Subject
Industrial and Manufacturing Engineering,General Environmental Science,Materials Science (miscellaneous),Business and International Management