JOINT CARTILAGE LUBRICATION WITH PHOSPHOLIPID BILAYER

Author:

WIERZCHOLSKI Krzysztof1

Affiliation:

1. Koszalin University of Technology,Institute of Technology and Education

Abstract

The surface of an articular cartilage human joint, coated with phospholipid bilayers or multi-layers, plays an important role in the surface-active phospholipid lubrication, friction, and wear during human limb movement. The biological bi-layer is a thin polar membrane composed of two layers of phospholipids that have a hydrophilic phosphate head (from the outside) and a hydrophobic tail (from the inside) consisting of two fatty acid chains. These membranes are flat sheets that form a continuous barrier around all cells. Synovial fluid (SF) in the human joint gap contains glycoprotein, lubricin (proteinglycan 4), and hyaluronidase, i.e. an enzyme that produces hialuron acid and ±10% phospholipids. Because the mechanism of surface articular phospholipid lubrication (SAPL) has been a frequently controversial subject in the past decade, this fact requires showing the hydrodynamic description in the form of a mathematical model of the abovementioned problem and its particular solution. To give a description of this model, it is necessary to recognize the variations of the dynamic viscosity of synovial fluid as a function of parameters depending on the presence of many phospholipid particles. To these parameters belong power (exponent) concentration of hydrogen ions (pH), cartilage wet ability (We), collagen fibre concentration in synovial fluid, and a created electrostatic field on the phospholipid membrane. Based on the Young-Laplace-Kelvin Law, initial achievements presented in scientific papers and our own investigations illustrated in this paper, the decrements, and increments of synovial fluid dynamic viscosities versus pH and wet ability (We) increases, simultaneously taking into account the influence of the intensity of charges in the electrostatic field. Moreover, this study considers the influence of collagen fibre concentration on the dynamic viscosity of synovial fluid. Based on initial considerations performed by virtue of the developed SAPL, it may be stated that the charge increments from low to high values of the electrostatic field is connected with viscosity increases of synovial fluid but only simultaneously with the pH index and cartilage wet ability variations.

Publisher

Index Copernicus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3