Influence of 65G steel microstructure on crack faces friction factor under mode II fatigue fracture

Author:

Ivanytskyj Y.L.1,Lenkovskiy T.M.1,Molkov Y.V.1,Kulyk V.V.2,Duriagina Z.A.3

Affiliation:

1. Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, Naukova St., 5, Lviv 79060, Ukraine

2. Department of Applied Materials Science and Materials Engineering, Lviv Polytechnic National University, Ustyyanovych str., 5, Lviv, 79013, Ukraine

3. Department of Applied Materials Science and Materials Engineering, Lviv Polytechnic National University, Ustyyanovych str., 5, Lviv, 79013, Ukraine, The Jhon Paul II Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland

Abstract

Purpose: The aim of the paper is to evaluate the dependence of microstructure parameters,strength and plasticity of steel on crack faces friction factor.Design/methodology/approach: The specimens for the investigation were cut out fromthe 10 mm thick hot-rolled plate of 65G steel used as a model material for fatigue anddurability testing of whole-rolled railway wheels. The mechanical characteristics of the steelwere determined according to the state standard using cylindrical specimens of diameter5 mm and effective length 50 mm. The specimens were heat-treated at the mentionedconditions. Fatigue testing under mode II loading was carried out on a special rigid loadingmachine in the standard laboratory conditions at symmetric sinusoidal cycle with a frequencyof 12 Hz in the range of fatigue crack growth rates da/dN = 5∙10-8…5∙10-7 m/cycle untilits reaches relative length l/b ≥ 0.8. The obtained microsections were investigated using theoptical metallographic microscope Neophot 9 equipped with a digital camera Nikon D50 andelectronic scanning microscope Zeiss EVO 40XVP. Hardness of the specimens with differentmicrostructure was determined using durometer TK-2. The crack faces friction factor wasdetermined using original device for fractured surfaces sliding under certain compressionforce realizationFindings: The dependences of microstructure parameters, strength and plasticity of steelon crack faces friction factor are obtained.Research limitations/implications: The investigation of the influence of microstructureparameters, strength and plasticity of real wheel steels on crack faces friction factor at themode II fatigue crack growth will be carried out.Practical implications: The value of crack faces friction factor have strong impact onstress intensity at the crack tip and must be taken into account at crack growth rates curvesplotting.Originality/value: Mode II fatigue crack faces friction factor of steel is firstly experimentallydetermined.

Publisher

Index Copernicus

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3