The analysis of strength and fracture morphology of Al-Si compound made from moulding sand formulation with bentonite binding material and Portland cement

Author:

Andoko F1,Puspitasari P.1,Gapsari F.2

Affiliation:

1. Mechanical Engineering Department, Engineering Faculty, State University of Malang, Semarang street No. 5, Malang, East Java, Indonesia, 65142

2. Mechanical Engineering Department, Engineering Faculty, University Brawijaya, Veteran street No. 16, Malang, East Java, Indonesia, 65145

Abstract

Purpose: This research aimed to analyse the casting result of Al-Si compound used formulation of moulding sand with bentonite binding material and Portland cement. Design/methodology/approach: Bentonite binding material’s type consisted of swelling (Na-bentonite) and non-swelling (Ca-bentonite). Optimum formulation of the moulding sand was 4% of swelling bentonite and 6% of Portland cement, 6% of non-swelling bentonite and 4% of Portland cement. The optimum formulation result of molding sand with bentonite binding material and Portland cement was used in Al-Si compound casting. The result of Al-Si compound casting strength was examined which in terms of its tensile strength, toughness, and hardness. Besides the three tests, the result was also supported by the fracture shape morphology of tensile test and impact toughness test result. Based on the Al-Si compound tensile test result, it was found that the best value was obtained when using 105.52 MPa of swelling bentonite. Findings: The impact toughness test result presented that the use of non-swelling bentonite produced better toughness value which was 0.00592 J/hour while the mickroVickers hardness test result showed that Al-Si compound result using non-swelling bentonite produced 111.04 HV hardness. Based on the fracture morphology test result using SEM of Al-Si compound casting result using swelling and non-swelling bentonite after being tested its tensile strength and impact toughness showed that the same fracture which was brittle fracture tended to appear. Research limitations/implications: In this casting process, combination which is being used is bentonite (swelling and non-swelling) and Portland cement as mould sand binding material. Practical implications: The combination can be used to find the bentonite type that can produce binding material formula with high binding level which can minimize defects on the resulted casting products. Originality/value: In this study swelling and non-swelling bentonite mixed with certain level of Portland cement combination are used.

Publisher

Index Copernicus

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3