Colour Difference Classification for Dyed Fabrics Based on Differential Evolution with Dynamic Parameter Selection to Optimise the Output Regularisation Extreme Learning Machine

Author:

Zhou Zhiyu1,Liu Dexin1,Zhang Jianxin2,Zhu Zefei3,Yang Donghe1,Jiang Likai1

Affiliation:

1. China, Hangzhou, Zhejiang Sci-Tech University, School of Information Science and Technology

2. China, Hangzhou, Zhejiang Sci-Tech University, Ministry of Education, The Research Centre of Modern Textile Machinery Technology

3. China, Hangzhou, Hangzhou Dianzi University, School of Mechanical Engineering

Abstract

A novel optimisation technique based on the differential evolution (DE) algorithm with dynamic parameter selection (DPS-DE) is proposed to develop a colour difference classification model for dyed fabrics, improve the classification accuracy, and optimise the output regularisation extreme learning machine (RELM). The technique proposed is known as DPS-DE-RELM and has three major differences compared with DE-ELM: (1) Considering that the traditional ELM provides an illness solution based on the output weights, DE is proposed to optimise the output of the RELM. (2) Considering the simple parameter setting of the traditional algorithm, the DE algorithm with DPS is adopted. (3) For DPS, an optimal range of parameters is chosen, and the efficiency of the algorithm is significantly improved. This study analyses the colour difference classification of fabric images captured under standard lighting based on the DPS-DE-RELM algorithm. First, the colour difference of the fabric images is calculated and six color-difference-related features extracted, and second the features are classified into five different levels based on the perception of humans. Finally, a colour difference classification model is built based on the DPS-DE-RELM algorithm, and then the optimal classification model suitable for this study is selected. The experimental results show that the output method with regularisation parameters can achieve a maximum classification accuracy of 98.87%, which is higher compared with the aforementioned optimised original ELM algorithm, which can achieve a maximum accuracy of 84.67%. Therefore, the method proposed has the advantages of greater convergence speed, high classification accuracy, and robustness.

Publisher

Walter de Gruyter GmbH

Subject

Industrial and Manufacturing Engineering,General Environmental Science,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3