Clothing Image Classification with a Dragonfly Algorithm Optimised Online Sequential Extreme Learning Machine

Author:

Li Jianqiang1,Shi Weimin1,Yang Donghe2

Affiliation:

1. China, Hangzhou, Zhejiang Sci-Tech University, Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province

2. China, Hangzhou, Zhejiang Sci-Tech University, School of Information Science and Technology

Abstract

This study proposes a solution for the issue of the low classification accuracy of clothing images. Using Fashion-MNIST as the clothing image dataset, we propose a clothing image classification technology based on an online sequential extreme learning machine (OSELM) optimised by the dragonfly algorithm (DA). First, we transform the Fashion-MNIST dataset into a data set that we extract from the corresponding grey image. Then, considering that the input weight and hidden layer bias of an OSELM are generated randomly, a DA is proposed to optimise the input weight and hidden layer bias of the OSELM to reduce the influence of random generation on the classification results. Finally, the optimised OSELM is applied to the clothing image classification. Compared to the other seven types of classification algorithms, the proposed clothing image classification model with the DA-optimised OSELM reached 93.98% accuracy when it contained 350 hidden nodes. Its performance was superior to other algorithms that were configured with the same number of hidden nodes. From a stability analysis of the box-plot, it was found that there were no outliers exhibited by the DA-OSELM model, whereas some other models had outliers or had lower stability compared to the model proposed, thereby validating the efficacy of the solution proposed.

Publisher

Walter de Gruyter GmbH

Subject

Industrial and Manufacturing Engineering,General Environmental Science,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3