The influence of workpiece speed on microhardness and residual stresses in vacuum-carburised 20MnCr5 steel using the single-piece flow method

Author:

Sawicki J.1,Januszewicz B.1,Sikora M.2,Witkowski B.2

Affiliation:

1. Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego St 1/15, 90-537 Lodz, Poland

2. Institute of Machine Tools and Production Engineering, Lodz University of Technology, Stefanowskiego St 1/15, 90-537 Lodz, Poland

Abstract

To determine the impact of selected conditions of abrasive treatment on the value and distribution of microhardness and residual stresses in layers carburised by a continuous single-piece flow method. Reference pieces were low pressure carburised at 920°C and then heat-treated in a 4D Quench heat treatment chamber at a pressure of 7 bar and tempered at 190ºC for 3 hours. In the next stage, samples were ground at various vw piece speeds, introducing grinding fluid into the cutting zone using the WET spraying method or using the MQL method at a minimum flow rate. The distribution of microhardness and residual stresses generated in the technological outer layer of the pieces following heat and chemical treatment and the grinding process was measured. Results of the tests indicated that the vw piece speed and method used to supply cooling and lubricating fluid to the grinding zone had an impact on selected parameters of the technological outer layer of flat samples made of 20MnCr5 steel. The process of grinding using an electrocorundum grinding wheel results in a deterioration of residual stresses in the material. For each of the three analysed vw piece speeds, reduced changes in material microhardness prior to cutting occur in the outer layer of samples ground using GF supplied at a minimum flow rate using the MQL method. Environmental considerations and having to conform to increasingly stringent regulations related to environmental protection and employee safety motivate researchers and businesses to entirely eliminate or reduce the use of grinding fluids in the grinding process and, therefore, to optimise grinding technology. Modern manufacturing industry requires the grinding process, which follows heat and chemical treatment, to be performed with the highest possible efficiency. However, retaining high parameters of the technological outer layer in comparison to the sample material following vacuum carburisation (before grinding) is extremely difficult. An optimised configuration of parameters of the grinding process and method of supplying grinding fluids enables meeting the current and future high expectations of the industry in this regard. The tests have enabled us to determine the impact of the applied vw workpiece speed and method of supplying grinding fluid on microhardness and residual stresses. Generally speaking, grinding with an electrocorundum grinding wheel results in a deterioration of residual stresses. For both methods of supplying GF (WET and MQL), the distribution of microhardness in the material of the samples ground with the highest workpiece speed (18.0 m/min) indicated no significant differences with regard to the distribution of microhardness in the material of the samples following heat and chemical treatment.

Publisher

Index Copernicus

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3