Usage of deep learning in recent applications

Author:

Dubey A.1,Rasool A.1

Affiliation:

1. Department of Computer Science and Engineering, Maulana Azad National Institute of Technology (MANIT), Bhopal, 462003, India

Abstract

Deep learning is a predominant branch in machine learning, which is inspired by the operation of the human biological brain in processing information and capturing insights. Machine learning evolved to deep learning, which helps to reduce the involvement of an expert. In machine learning, the performance depends on what the expert extracts manner features, but deep neural networks are self-capable for extracting features. Deep learning performs well with a large amount of data than traditional machine learning algorithms, and also deep neural networks can give better results with different kinds of unstructured data. Deep learning is an inevitable approach in real-world applications such as computer vision where information from the visual world is extracted, in the field of natural language processing involving analyzing and understanding human languages in its meaningful way, in the medical area for diagnosing and detection, in the forecasting of weather and other natural processes, in field of cybersecurity to provide a continuous functioning for computer systems and network from attack or harm, in field of navigation and so on. Due to these advantages, deep learning algorithms are applied to a variety of complex tasks. With the help of deep learning, the tasks that had been said as unachievable can be solved. This paper describes the brief study of the real-world application problems domain with deep learning solutions.

Publisher

Index Copernicus

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3