State estimators and observers for continuous and discrete linear systems. Part 1. Differential asymptotic state estimators

Author:

Byrski Jędrzej1,Byrski Witold2

Affiliation:

1. AGH University of Science and Technology, Department of Applied Computer Science, Al.Mickiewicza 30, Krakow, 30-305 Poland

2. AGH University of Science and Technology, Department of Automatics and Robotics, Al.Mickiewicza 30, Krakow, 30-305, Poland

Abstract

In the paper an overview of state estimators and state observers used in linear systems, will be presented. The state estimators and observers can be used in many applications like the state reconstruction for the control purposes or for the diagnosis and fault detection in technical processes or for the virtual measurements of inaccessible variables of the system as well as for the best filtration of the differential equation solution. As the standard most commonly the Kalman filter and Luenberger type observers are used. Although the Kalman filter guarantees optimal filtering quality of the state, reconstructed from the noisy measurements, both Kalman filter and the Luenberger observer guarantee only asymptotic quality of the real state changes and tracking, basing on the current measurements of the system output and input signals. Unfortunately, the value of the estimation error at any moment of time cannot be calculated. The discussion on differences between continuous and two types of discrete Kalman Filter will be presented. This paper is plan to be the introduction to presentation of the another type of the state observers which have the structure given by the integral operators. Based on measurements of the system output and input signals on some predefined finite time interval, they can reconstruct, after this interval, the observed state exactly.

Publisher

University of Applied Sciences in Tarnow, Poland

Reference9 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3