Synthesis of metallic alloy particles on flat graphitic interfaces in arc discharge

Author:

Breus A.1ORCID,Abashin S.1,Serdiuk O.1,Sysoiev Iu.2

Affiliation:

1. Plasma Laboratory, Faculty of Aircraft Engines, National Aerospace University, Kharkiv, 61070, Ukraine

2. Plasma Laboratory, Faculty of Aircraft Engines, National Aerospace University, Kharkiv 61070, Ukraine

Abstract

The application of arc discharge to synthesising encapsulated (Fe-Cu-Al)@C structures is studied. The cost-effectiveness of the proposed technique may be beneficial for developing a new method for large-scale production of metal micro- and nanoparticles protected from oxidation by a carbon shell.A copper sample was immersed into a mixture of graphite, iron, and aluminium powder and placed into a negatively powered crucible of a setup designed to ignite arc discharge at atmospheric conditions. The proposed approach prevents the oxidation of droplets of Fe-Cu-Al alloy by covering them with a thin layer of carbon, which is also engaged as a collector of the metal particles.The application of arc discharge resulted in the generation of metal particles and various carbon nanostructures, which were confirmed by SEM images. The nanostructures were grouped into more complex flower-, ball-, tree-, and octopus-shaped structures with a large yield of metallic alloy particles ranging from a few μm (micrometers) to nanometre sizes. These findings suggest the catalytic application of the structures after the grown particles are cleared from the carbon shell to be implemented as active chemical agents.The main limitation is the uncontrolled heat transfer from the discharge volume. Therefore, an additional screen should be installed around the volume in order to improve control over synthesis in future studies.This research confirms a flexible and simple method of synthesising metallic alloy particles that may be applied for catalytic applications.The synthesis is conducted using a well-known arc discharge technique to expand the production yield and diversity of chemically-active metal particles protected from oxidation by a shell before the intended application.

Publisher

Index Copernicus

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3