Spatiotemporal attention mechanism-based multistep traffic volume prediction model for highway toll stations

Author:

Huang Zijing1,Lin Peiqun1,Lin Xukun2,Zhou Chuhao1,Huang Tongge3

Affiliation:

1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, China

2. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, China; Department of Transportation of Guangdong Guangzhou, China

3. Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract

As the fundamental part of other Intelligent Transportation Systems (ITS) applications, short-term traffic volume prediction plays an important role in various intelligent transportation tasks, such as traffic management, traffic signal control and route planning. Although Neural-network-based traffic prediction methods can produce good results, most of the models can’t be explained in an intuitive way. In this paper, we not only proposed a model that increase the short-term prediction accuracy of the traffic volume, but also improved the interpretability of the model by analyzing the internal attention score learnt by the model. we propose a spatiotemporal attention mechanism-based multistep traffic volume prediction model (SAMM). Inside the model, an LSTM-based Encoder-Decoder network with a hybrid attention mechanism is introduced, which consists of spatial attention and temporal attention. In the first level, the local and global spatial attention mechanisms considering the micro traffic evolution and macro pattern similarity, respectively, are applied to capture and amplify the features from the highly correlated entrance stations. In the second level, a temporal attention mechanism is employed to amplify the features from the time steps captured as contributing more to the future exit volume. Considering the time-dependent characteristics and the continuity of the recent evolutionary traffic volume trend, the timestamp features and historical exit volume series of target stations are included as the external inputs. An experiment is conducted using data from the highway toll collection system of Guangdong Province, China. By extracting and analyzing the weights of the spatial and temporal attention layers, the contributions of the intermediate parameters are revealed and explained with knowledge acquired by historical statistics. The results show that the proposed model outperforms the state-of-the-art model by 29.51% in terms of MSE, 13.93% in terms of MAE, and 5.69% in terms of MAPE. The effectiveness of the Encoder-Decoder framework and the attention mechanism are also verified.

Publisher

Index Copernicus

Subject

Transportation,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3