Multi-Response Optimisation for the Development of an Activated Carbon Web as Interlining for Higher Electrical Conductivity and EMI Shielding Using Grey Relational Analysis

Author:

Naeem M. Salman1,Ahmad Naseer1,Javed Zafar1,Jabbar Abdul1,Rehman Ateeq ur1,Zubair Muhammad1,Gilani Syed Qummer Zia1,Ahmad Zuhaib1,Karahan Mehmet2

Affiliation:

1. Pakistan, Faisalabad, National Textile University, Faculty of Engineering

2. Turkey, Görükle-Bursa, Udulağ University, Vocational School of Technical Sciences

Abstract

This paper presents a simple and novel method of producing an activated carbon (AC) non-woven web from acrylic waste derived from discarded bathmats converted into a nonwoven web by a carding and needle punching machine. After stabilisation at lower temperature, carbonisation of the stabilised web was performed in a muffle furnace. The carbonisation temperature, the holding time of the activated carbon web at the final temperature, the heating rate to reach the final carbonisation temperature and the number of steps adopted for developing the carbon web were optimised using the grey relational analysis (GRA) approach to get optimum responses of the surface area of the web, electrical conductivity and electromagnetic shielding. The results demonstrated a large improvement in electrical conductivity as surface resistivity decreased from 134.21 Ω.mm to 0.28 Ω.mm, and the corresponding electromagnetic shielding increased to 82.63 dB when the temperature of the carbonisation, the holding time and number of steps were increased. The surface area in the AC web was increased from 73 m2g-1 to 210 m2g-1 with an increase in the carbonisation temperature, the holding time and number of steps to reach the final temperature. The optimisation technique used in this work could be successfully used in cost and error reduction while producing an AC web. The optimised AC web was characterised by Brunauer, Emmett and Teller (BET), X-ray diffraction characterisation and elemental analysis (EDX) in order to determine changes in its structure, surface area, degree of crystallinity, inter-layer spacing and proportion of different elements. The AC web developed can be effectively employed as interlining in apparels because of its flexibility and eco-friendly electromagnetic shielding, as it works on the principle of the absorption, reflections and internal reflections of electromagnetic radiations.

Publisher

Index Copernicus

Subject

Industrial and Manufacturing Engineering,General Environmental Science,Materials Science (miscellaneous),Business and International Management

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3