Uzun Kısa Süre Bellek (LSTM) ile Toprak Sıcaklığının Tahmini

Author:

İNİK Orhan1,İNİK Özkan2,ÖZTAŞ Taşkın3,YUKSEL Alaaddin1

Affiliation:

1. BİNGÖL ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ, TOPRAK BİLİMİ VE BİTKİ BESLEME BÖLÜMÜ, TOPRAK BİLİMİ VE BİTKİ BESLEME PR.

2. TOKAT GAZİOSMANPAŞA ÜNİVERSİTESİ, MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ, BİLGİSAYAR MÜHENDİSLİĞİ PR.

3. ATATÜRK ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ, TOPRAK BİLİMİ VE BİTKİ BESLEME BÖLÜMÜ, TOPRAK BİLİMİ VE BİTKİ BESLEME PR.

Abstract

Toprak sıcaklığı, toprağın birçok özelliğini etkilediği gibi bitki gelişimi süreçlerinde de önemli düzeyde etki yapmaktadır. Toprak sıcaklığının bilinmesi ve doğru tahmini hem toprak yönetimi hem de bitkisel üretim için önem arzetmektedir. Özelliklede tarıma dayalı ekonomileriyle öne çıkan ülkeler için sıcaklık tahminlerinin doğrululuğu çok önemlidir. Bu yüzden son yıllarda toprak sıcaklık tahminlerinde farklı yapay zeka yöntemleri kullanılmaya başlanmıştır. Derin öğrenme yöntemleri yüksek tahmin doğruluğu elde etmede bu konuda öncülük etmektedir. Bu çalışmada toprak sıcaklığı tahmininde etkin bir model oluşturmak için derin öğrenme (DL) alt mimarisi olan Uzun Kısa Süreli Bellek (LSTM) ağı önerilmiştir. Çalışmada kullanılan veriler Bingöl İline ait 2013-2021 yıllarına ait 50 cm derinlikteki günlük toprak sıcaklıklarıdır. Çalışma kapsamındaki veri setinin %80’ni önerilen LSTM modelinin eğitimi için kullanılmıştır. Geriye kalan %20’si ise model tarafından tahmin edilerek model başarısı ölçülmüştür. Eğitilen LSTM modelinin yapmış olduğu tahmin sonucundaki RMSE değeri 1.25 olarak elde edilmiştir. Önerilen modelin tahmin doğruluğunun yüksek olması, sıcaklık verileri tahmini çalışmalarında bu modelin başarılı bir şekilde uygulanabileceğini göstermiştir.

Publisher

Turk Tarim ve Doga Bilimleri Dergisi

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

Reference32 articles.

1. Akyüz AÖ, Kumaş K, Ayan M, Güngör A (2020) Antalya İli Meteorolojik Verileri Yardımıyla Hava Sıcaklığının Yapay Sinir Ağları Metodu ile Tahmini. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 10: 146-154.

2. Aslay F, Üstün Ö (2013) Meteorolojik Parametreler Kullanılarak Yapay Sİnir Ağları ile Toprak Sıcaklığının Tahmini. Politeknik Dergisi 16: 139-145.

3. Avcı V, Esen F, Kıranşan K (2018) Bingöl İlinin Fiziki Çoğrafya Özellikleri. The Journal of Bingöl Studies 4.

4. Bond-Lamberty B, Wang C, Gower ST (2005) Spatiotemporal measurement and modeling of stand-level boreal forest soil temperatures. Agricultural and Forest Meteorology 131: 27-40.

5. Buckman HO, Brady NC (1922) The nature and properties of soils. Macmillan.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Soil Organic Matter with Deep Learning;Arabian Journal for Science and Engineering;2023-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3