Affiliation:
1. TEKİRDAĞ NAMIK KEMAL ÜNİVERSİTESİ
Abstract
Bu çalışmada, salata marul yetiştiriciliğinde derin öğrenme metodlarından YOLOv5n, YOLOv5s ve Yolov5m kullanılarak hasat zamanı tespiti belirlenmeye çalışılmıştır. Herbir metot için 640x640 çözünürlük üzerinden eğitim yapılmıştır. Bu eğitim metodlarından hangi metodun ve hangi çözünürlüğün tam sonuç vereceği incelenmiştir. Oluşturan üç modelin tüm metrik değerleri incelenmiştir. En başarılı model YOLOv5n algoritmasıyla, 640x640 boyutundaki görselleri 10 batch size olarak 150 epoch ile eğitilmiş “Model 1” model olduğu görülmüştür. Model değerleri sonuçları “metrics/precision”, “metrics/recall”, “metrics/mAP_0.5” ve “metrics/mAP_0.5:0.95” olarak incelenmiştir. Bunlar, bir modelin tespit başarısını ölçen anahtar metriklerdir ve ilgili modelin doğrulama veri kümesinde gösterdiği performansı belirtmektedir. “Model 1” modelinin metrik verileri, diğer modellerle kıyaslandığında daha yüksek olduğu tespit edilmiştir. Ölçülen değer Model 1: Size: 640x640, Batch: 10, Epoch: 150, Algorithm: YOLOv5n’dir. Buradan “Model 1” in robotik marul hasadında, marulun hasat kriterin bulunması için kullanılacak en iyi tespit modeli olduğu anlaşılmıştır.
Publisher
Turk Tarim ve Doga Bilimleri Dergisi
Subject
Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology
Reference19 articles.
1. Anonim 1, https://tr.wikipedia.org/wiki/Derin_ögrenme(Erişim tarihi:15.05.2023)
2. Anonim 2,https://www.beyaz.net/tr/yazilim/makaleler/ derin_ogrenme_deep _learning_nedir.html(Erişim tarihi:15.05.2023)
3. Anonim 3,https://alitunacanonar.medium.com/derin-ögrenme-yöntemleri-ve-uygulamaları-1ce215de40e8
(Erişim tarihi:15.05.2023)
4. ASLAN, M. ,(2021). Derin Öğrenme ile Şeftali Hastalıkların Tespiti. European Journal of Science and Technology,
23, 540–546. https://doi.org/10.31590/ejosat.883787
5. Bai, Y., Mao, S., Zhou, J., Zhang, B., (2023). Clustered tomato detection and picking point location using machine learning-aided image analysis for automatic robotic harvesting. Precision Agriculture, 24(2), 727–743. https://doi.org/10.1007/s11119-022-09972-6