MACHINE LEARNING FOR INTELLIGENT ENERGY CONSUMPTION IN SMART HOMES

Author:

Asem Alzoubi

Abstract

The growth of personal pleasure is a direct result of a person's ability to provide themselves with energy. Since people may construct and enhance their way of life more swiftly with current innovation, valuable energy has become a sought-after expansion for many years due to the utilization of smart houses and structures. The demand for energy is greater than the supply, resulting in a lack of energy. In order to keep up with the demand for energy, new strategies are being developed. Many areas' residential energy use is between 30 and 40 percent. There has been an increase in the need for intelligence in applications like as asset management, energy-efficient automating, safety, and healthcare monitoring as a result of smart homes coming into existence and expanding. Energy consumption optimization is being tackled with the use of an energy management approach in this study. There has been a recent surge in interest in data fusion in the context of building energy efficiency. Accuracy and miss rate of energy consumption predictions were calculated utilizing the data fusion technique presented by the proposed study. Simulated findings are being compared with those of previously reported methods. It also has a prediction accuracy of 92 percent, which is greater than that of any other technique that has been previously reported. It's becoming increasingly important for households to keep their power costs down as the amount of electricity they consume rises and dispersed new energy sources are introduced. The installation of a home energy management system is a practical solution to these issues.

Publisher

Global Academic Forum on Technology, Innovation And Management (GAFTIM)

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3