A RULE-BASED APPROACH USING THE ROUGH SET ON COVID-19 DATA

Author:

Çekik Rasim1ORCID

Affiliation:

1. ŞIRNAK ÜNİVERSİTESİ

Abstract

The COVID-19 pandemic has not only caused loss of life but also significantly affected people's emotional state. These emotional impacts have had serious consequences on societies and economies around the world. In order to repair these devastations in society, it is important to analyse these emotional effects in depth. In this study, the effects of the pandemic on human emotions are analysed using soft computing techniques. A rule-based approach is proposed for the analysis with the help of a rough set. The proposed method is based on two main components. The first one is the process of selecting the optimal subset (OFS) from the whole feature set with the help of k best known feature selection approaches. The second component involves the use of rough clustering methods to generate rules on the selected feature subset OFS. In the study, the first real data set called " Real World Concern Dataset", which is obtained from emotional responses to COVID-19, was used. The dataset consists of 5,000 items (2,500 short + 2,500 long). In the experimental studies, the proposed approach was tested with both labelled and unlabelled data, and it was observed that effective results were obtained with an accuracy rate of over 85%. It was also found that people were highly concerned about the future due to the pandemic.

Publisher

Eskisehir Osmangazi Universitesi Muhendislik ve Mimarlik Fakultesi Dergisi

Reference32 articles.

1. Acheampong, F. A., Wenyu, C., & Nunoo‐Mensah, H. (2020). Text‐based emotion detection: Advances, challenges, and opportunities. Engineering Reports, 2(7), e12189.

2. Arulmurugan, R., Sabarmathi, K. R., & Anandakumar, H. (2019). RETRACTED ARTICLE: Classification of sentence level sentiment analysis using cloud machine learning techniques. Cluster Computing, 22(Suppl 1), 1199–1209.

3. Aue, A., & Gamon, M. (2005). Customizing sentiment classifiers to new domains: A case study. Proceedings of Recent Advances in Natural Language Processing (RANLP), 1(3.1), 1–2.

4. Banda, J., Tekumalla, R., Wang, G., Yu, J., Liu, T., Ding, Y., & Chowell, G. (2020). A Twitter dataset of 150+ million tweets related to COVID-19 for open research, April 5.

5. Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, 440–447.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3