BENTİK FORAMİNİFER GÖRÜNTÜ SINIFLAMASI VE TANIMLAMALARINDA EVRİŞİMLİ SİNİR AĞI (CNN) TABANLI YENİ BİR MODEL

Author:

YAYAN Kübra1ORCID,YAYAN Uğur1ORCID

Affiliation:

1. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

Abstract

Fossil studies are of great importance in order to observe the change of living species over the years, to make inferences by using the information provided by the observed species, and to understand the developing and changing structure of the world we live in over the years. However, the examination and interpretation of fossil specimens is a complex and long process. Artificial intelligence studies have begun to be applied to this field in order to facilitate the working methods of paleontologists. The detection and classification of fossil specimens with the aid of computers simplifies this process as much as possible compared to manual classification processes and reduces foreign dependency for fossil assemblages for which paleontologists are not experts. To achieve this, 9 benthic foraminiferal species and non-foraminiferal sample photographs from a selected dataset were used. In this study, a new method developed for the classification of benthic foraminifera using deep convolutional neural networks, reaching higher accuracy than the results in the literature, is presented. With this method, at least 70% accuracy rates were achieved in the test results of the trained system. This study, which reached high accuracy rates with a new method, has created a successful development for the branch of paleontology in the use of artificial intelligence in microfossil identification.

Publisher

Eskisehir Osmangazi Universitesi Muhendislik ve Mimarlik Fakultesi Dergisi

Subject

General Medicine

Reference12 articles.

1. Referans1: Carvalho, L. E., Fauth, G., Fauth, S. B., Krahl, G., Moreira, A. C., Fernandes, C. P., & Von Wangenheim, A. (2020). Automated microfossil identification and segmentation using a deep learning approach. Marine Micropaleontology, 158, 101890. doi:https://doi.org/10.1016/j.marmicro.2020.101890

2. Referans2: Ge, Q., Zhong, B., Kanakiya, B., Mitra, R., Marchitto, T., & Lobaton, E. (2017, November). Coarse-to-fine foraminifera image segmentation through 3D and deep features. In 2017 IEEE Symposium series on computational intelligence (SSCI) (pp. 1-8). IEEE. doi: 10.1109/SSCI.2017.8280982

3. Referans3: Gutiérrez Lira, E., Nouboud, F., Chalifour, A., & Voisin, Y. (2018, July). Image Segmentation and Object Extraction for Automatic Diatoms Classification. In International Conference on Image and Signal Processing (pp. 55-62). Springer, Cham. doi: https://doi.org/10.1007/978-3-319-94211-7_7 Referans4: Hu, Y., Limaye, A., & Lu, J. (2020). Three-dimensional segmentation of computed tomography data using Drishti Paint: new tools and developments. Royal Society open science, 7(12), 201033. doi: https://doi.org/10.1098/rsos.201033

4. Referans5:Johansen, T. H., & Sørensen, S. A. (2020). Towards detection and classification of microscopic foraminifera using transfer learning. arXiv preprint arXiv:2001.04782. doi: https://doi.org/10.48550/arXiv.2001.04782

5. Referans6: Marchant, R., Tetard, M., Pratiwi, A., Adebayo, M., & de Garidel-Thoron, T. (2020). Automated analysis of foraminifera fossil records by image classification using a convolutional neural network. Journal of Micropalaeontology, 39(2), 183-202. doi: https://doi.org/10.5194/jm-39-183-2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3