Effect of Vitamin D Receptor Gene Polymorphism (ВsmI, FokI) and its Concentration on the Severity of Covid-Associated Lung Damage

Author:

Karachenova A. M.1,Romanova E. N.1

Affiliation:

1. Chita State Medical Academy, Department of polyclinic therapy with a course of medical rehabilitation

Abstract

Objective. To identify the relationship between the serum vitamin B content and the polymorphism of the vitamin B receptor gene with the severity of the course of COVID-19-associated lung damage.To identify the relationship between serum vitamin D content and polymorphism of the vitamin D receptor gene with the severity of COVID-19- associated lung damage. Materials and methods. The paper presents the results of an examination of 200 people, after 1 month suffering COVID-associated lung damage in the period from June 1 to October 31, 2020. The patients were divided into groups of 50 people depending on the degree of lung damage based on the results of computed tomography: group 1 (CT-1), median by age was 51.5 [50.5; 54.8]; group 2 (CT-2), median by age 57.0 [53.1; 57.0]; group 3 (CT-3), median by age 52.5 [51.9; 55.0]; group 4 (CT-4), median 55.0 [53.2; 56.4]. The control group included 56 relatively healthy people who did not have coronavirus infection; the median age was 55.0 [51.1; 55.0]. All groups were comparable in age and gender. The concentration of total 25-hydroxyvitamin D (25(OH)D) was studied in blood serum. A molecular genetic study of the vitamin D receptor gene was also carried out: 283 A>G (BsmI) and 2 A>G (FokI). Results. It was revealed that insufficient levels of 25(OH)D in the blood are one of the risk factors for the development of COVID-19 infection, as well as a risk factor for worsening the course of COVID-19-associated lung damage. Analysis of the polymorphism of the vitamin D receptor gene VDR: 283 A>G showed the predominant inheritance of allele A and homozygote A/A in patients with a high level of damage to lung tissue due to COVID-19 infection — KT-3, 4. Study of polymorphism of the vitamin D receptor gene VDR: 2 A>G showed preferential inheritance of homozygote A/A among patients compared to the control group. When studying the concentration of vitamin D in patients with COVID-19-associated lung damage depending on the polymorphism of the vitamin D receptor genes VDR: 283 A>G (BsmI) and VDR: 2 A>G (FokI), no differences were found. Conclusion. Insufficient levels of 25(OH)D in the blood may be one of the factors contributing to the complicated course of coronavirus infection. Analysis of the vitamin D receptor gene polymorphism VDR: 283 A>G showed preferential inheritance of the A allele and homozygote A/A in a more severe category of patients — with more than 50 % damage to the lung tissue (CT-3, 4) against the background of COVID-19 infection. A study of the polymorphism of the vitamin D receptor gene VDR: 2 A>G revealed the most common carriage of the A/A homozygote among patients compared to the control group.

Publisher

Synapse, LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3