Abstract
This study was conducted to investigate the effects of sprouting buckwheat and chickpeas on their nutritional and physicochemical properties. Lipid content decreased significantly (P<0.05) after buckwheat germination but increased significantly (P<0.05) after chickpea germination. Protein, vitamin B₆ total phenols, and total flavonoid content increased significantly (P<0.05) in sprouted treatments compared to non-sprouted treatments. Water holding capacity was significantly (P<0.05) greater for sprouted treatments which could be related to the greater number of proteins after germination. Otherwise, water holding capacity decreased at 55oC for sprouted treatments, which could be due to decreased swelling power at higher temperatures. A shear-thinning model fitted the flow behavior index of sprouted and non-sprouted treatments. Moreover, sprouting also contributed to the decrease in pasting viscosities, except for breakdown viscosity. The use of sprouted buckwheat and chickpea to replace fractions of wheat flour resulted in a significant (p<0.05) increase in syneresis during the freeze-thaw cycle of flour, cooked pasta water uptake and solid leaching out due to increasing soluble sugars after germination and a weaker gluten network because of adding gluten-free ingredients.
Subject
Polymers and Plastics,General Environmental Science
Reference37 articles.
1. Abd Elmoneim, O. E., and Bernhardt, R. (2013). Some physicochemical properties of flour from germinated sorghum grain. Journal of Food Science and Technology, 50(1), 186-190.
2. Albawarshi Y., Amr A., and Al-Ismael K. (2019). Modeling for thermal degradation of Thiamin (B1) in flat Arabic bread. International Journal of Applied and Natural Sciences (IJANS), 8(4), 81-90.
3. Al-Ismail, K., Hamdan, M., and Al-Delaimy, K. (2006). Antioxidant and anti-Bacillus cereus activities of selected plant extracts. Jordan Journal of Agricultural Sciences, 2(2), 64-74.
4. AOAC International. (2011). Official Methods of Analysis, 18th ed. Maryland, AOAC INTERNATIONAL.
5. Ariahu, C. C., and Ogunsua, A. O. (2000). Thermal degradation kinetics of thiamine in periwinkle based formulated low acidity foods. International Journal of Food Science and Technology, 35, 315–321.