Identifying Cases of Sleep Disorders through International Classification of Diseases (ICD) Codes in Administrative Data

Author:

Jolley Rachel J,Liang Zhiying,Peng Mingkai,Pendharkar Sachin R,Tsai Willis,Chen Guanmin,Eastwood Cathy A,Quan Hude,Ronksley Paul E

Abstract

Objectives Prevalence, and associated morbidity and mortality of chronic sleep disorders have been limited to small cohort studies, however, administrative data may be used to provide representation of larger population estimates of disease. With no guidelines to inform the identification of cases of sleep disorders in administrative data, the objective of this study was to develop and validate a set of ICD-codes used to define sleep disorders including narcolepsy, insomnia, and obstructive sleep apnea (OSA) in administrative data. Methods A cohort of adult patients, with medical records reviewed by two independent board-certified sleep physicians from a sleep clinic in Calgary, Alberta between January 1, 2009 and December 31, 2011, was used as the reference standard. We developed a general ICD-coded case definition for sleep disorders which included conditions of narcolepsy, insomnia, and OSA using: 1) physician claims data, 2) inpatient visit data, 3) emergency department (ED) and ambulatory care data. We linked the reference standard data and administrative data to examine the validity of different case definitions, calculating estimates of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).  Results From a total of 1186 patients from the sleep clinic, 1045 (88.1%) were classified as sleep disorder positive, with 606 (51.1%) diagnosed with OSA, 407 (34.4%) with insomnia, and 59 (5.0%) with narcolepsy. The most frequently used ICD-9 codes were general codes of 307.4 (Nonorganic sleep disorder, unspecified), 780.5 (unspecified sleep disturbance) and ICD-10 codes of G47.8 (other sleep disorders), G47.9 (sleep disorder, unspecified). The best definition for identifying a sleep disorder was an ICD code (from physician claims) 2 years prior and 1 year post sleep clinic visit: sensitivity 79.2%, specificity 28.4%, PPV 89.1%, and NPV 15.6%. ICD codes from ED/ambulatory care data provided similar diagnostic performance when at least 2 codes appeared in a time period of 2 years prior and 1 year post sleep clinic visit: sensitivity 71.9%, specificity 54.6%, PPV 92.1%, and NPV 20.8%. The inpatient data yielded poor results in all tested ICD code combinations. Conclusion Sleep disorders in administrative data can be identified mainly through physician claims data and with some being determined through outpatient/ambulatory care data ICD codes, however these are poorly coded within inpatient data sources. This may be a function of how sleep disorders are diagnosed and/or reported by physicians in inpatient and outpatient settings within medical records. Future work to optimize administrative data case definitions through data linkage are needed.

Publisher

Swansea University

Subject

Information Systems and Management,Health Informatics,Information Systems,Demography

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3