Population Data Science: The science of data about people

Author:

McGrail Kim,Jones Kerina

Abstract

IntroductionSocietal and individual benefits of data-intensive science are substantial but raise challenges of balancing individual privacy and public good, while building appropriate governance and socio-technical systems to support data-intensive science. We set out to define a new field of inquiry to move collective interests forward. Objectives and ApproachOur objectives were: 1. To create a concise definition of the emerging field of Population Data Science; 2. To highlight the characteristics and challenges of Population Data Science; 3. To differentiate Population Data Science from existing fields of data science and informatics; and 4. To discuss the implications and future opportunities for Population Data Science. Objectives 1 and 2 were met largely through International Population Data Linkage Network (IPDLN) member engagement, Objective 3 was evaluated via literature review, and Objective 4 was achieved through iterative and collective work on a peer-reviewed position paper. ResultsWe define Population Data Science succinctly as the science of data about people. It is related to, but distinct from, the fields of data science and informatics. A broader definition includes four characteristics of: i) data use for positive impact on individuals and populations; ii) bringing together and analyzing data from multiple sources; iii) identifying population-level insights; and iv) developing safe, privacy-sensitive and ethical infrastructure to support research. One implication of these characteristics is that few individuals or organisations possess all of the requisite knowledge and skills comprising Population Data Science, so this is by nature a multi-disciplinary “team science” field. There is a need to advance various aspects of science, such as data linkage technology, various forms of analytics, and methods of public engagement. Conclusion/ImplicationsThese implications are the beginnings of a research agenda for Population Data Science, which if approached as a collective field, will catalyze significant advances in our understanding of society, health, and human behavior and increase the impact of our research.

Publisher

Swansea University

Subject

Information Systems and Management,Health Informatics,Information Systems,Demography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3