Machine learning for identification of frailty in Canadian primary care practices

Author:

Aponte-Hao Sylvia,Wong Sabrina T.,Thandi Manpreet,Ronksley Paul,McBrien Kerry,Lee Joon,Grandy Mathew,Mangin Dee,Katz Alan,Singer Alexander,Manca Donna,Williamson Tyler

Abstract

IntroductionFrailty is a medical syndrome, commonly affecting people aged 65 years and over and is characterized by a greater risk of adverse outcomes following illness or injury. Electronic medical records contain a large amount of longitudinal data that can be used for primary care research. Machine learning can fully utilize this wide breadth of data for the detection of diseases and syndromes. The creation of a frailty case definition using machine learning may facilitate early intervention, inform advanced screening tests, and allow for surveillance. ObjectivesThe objective of this study was to develop a validated case definition of frailty for the primary care context, using machine learning. MethodsPhysicians participating in the Canadian Primary Care Sentinel Surveillance Network across Canada were asked to retrospectively identify the level of frailty present in a sample of their own patients (total n = 5,466), collected from 2015-2019. Frailty levels were dichotomized using a cut-off of 5. Extracted features included previously prescribed medications, billing codes, and other routinely collected primary care data. We used eight supervised machine learning algorithms, with performance assessed using a hold-out test set. A balanced training dataset was also created by oversampling. Sensitivity analyses considered two alternative dichotomization cut-offs. Model performance was evaluated using area under the receiver-operating characteristic curve, F1, accuracy, sensitivity, specificity, negative predictive value and positive predictive value. ResultsThe prevalence of frailty within our sample was 18.4%. Of the eight models developed to identify frail patients, an XGBoost model achieved the highest sensitivity (78.14%) and specificity (74.41%). The balanced training dataset did not improve classification performance. Sensitivity analyses did not show improved performance for cut-offs other than 5. ConclusionSupervised machine learning was able to create well performing classification models for frailty. Future research is needed to assess frailty inter-rater reliability, and link multiple data sources for frailty identification.

Publisher

Swansea University

Subject

Information Systems and Management,Health Informatics,Information Systems,Demography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3