Thirty-three myths and misconceptions about population data: from data capture and processing to linkage

Author:

Christen Peter,Schnell Rainer

Abstract

Databases covering all individuals of a population are increasingly used for research and decision-making. The massive size of such databases is often mistaken as a guarantee for valid inferences. However, population data have characteristics that make them challenging to use. Various assumptions on population coverage and data quality are commonly made, including how such data were captured and what types of processing have been applied to them. Furthermore, the full potential of population data can often only be unlocked when such data are linked to other databases. Record linkage often implies subtle technical problems, which are easily missed. We discuss a diverse range of myths and misconceptions relevant for anybody capturing, processing, linking, or analysing population data. Remarkably, many of these myths and misconceptions are due to the social nature of data collections and are therefore missed by purely technical accounts of data processing. Many are also not well documented in scientific publications. We conclude with a set of recommendations for using population data.

Publisher

Swansea University

Subject

Information Systems and Management,Health Informatics,Information Systems,Demography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3