Identification of International Society on Thrombosis and Haemostasis major and clinically relevant non-major bleed events from electronic health records: a novel algorithm to enhance data utilisation from real-world sources

Author:

Hartenstein Alexander,Abdelgawwad Khaled,Kleinjung Frank,Privitera Stephen,Viethen Thomas,Vaitsiakhovich Tatsiana

Abstract

IntroductionIn randomised controlled trials (RCTs), bleeding outcomes are often assessed using definitions provided by the International Society on Thrombosis and Haemostasis (ISTH). Information relating to bleeding events in real-world evidence (RWE) sources are not identified using these definitions. To assist with accurate comparisons between clinical trials and real-world studies, algorithms are required for the identification of ISTH-defined bleeding events in RWE sources. ObjectivesTo present a novel algorithm to identify ISTH-defined major and clinically-relevant non-major (CRNM) bleeding events in a US Electronic Health Record (EHR) database. MethodsThe ISTH definition for major bleeding was divided into three subclauses: fatal bleeds, critical organ bleeds and symptomatic bleeds associated with haemoglobin reductions. Data elements from EHRs required to identify patients fulfilling these subclauses (algorithm components) were defined according to International Classification of Diseases, 9th and 10th Revisions, Clinical Modification disease codes that describe key bleeding events. Other data providing context to bleeding severity included in the algorithm were: `interaction type' (diagnosis in the inpatient or outpatient setting), `position' (primary/discharge or secondary diagnosis), haemoglobin values from laboratory tests, blood transfusion codes and mortality data. ResultsIn the final algorithm, the components were combined to align with the subclauses of ISTH definitions for major and CRNM bleeds. A matrix was proposed to guide identification of ISTH bleeding events in the EHR database. The matrix categorises bleeding events by combining data from algorithm components, including: diagnosis codes, 'interaction type', 'position', decreases in haemoglobin concentrations (≥2 g/dL over 48 hours) and mortality. ConclusionsThe novel algorithm proposed here identifies ISTH major and CRNM bleeding events that are commonly investigated in RCTs in a real-world EHR data source. This algorithm could facilitate comparison between the frequency of bleeding outcomes recorded in clinical trials and RWE. Validation of algorithm performance is in progress.

Publisher

Swansea University

Subject

Information Systems and Management,Health Informatics,Information Systems,Demography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3