Describing the linkage between administrative social assistance and health care databases in Ontario, Canada

Author:

De Oliveira ClaireORCID,Gatov Evgenia,Rosella Laura,Chen Simon,Strauss Rachel,Azimaee Mahmoud,Paterno Elizabeth,Guttmann Astrid,Chong Nelson,Ionescu Peter,Ji Sean,Kopp Alexander,Lan Annie,Ma Charlotte,Pring Miranda,Raj Priyanka,Ryan Steven,Saskin Refik,Wong Fiona,

Abstract

BackgroundThe linkage of records across administrative databases has become a powerful tool to increase information available to undertake research and analytics in a privacy protective manner. ObjectiveThe objective of this paper was to describe the data integration strategy used to link the Ontario Ministry of Children, Community and Social Services (MCCSS)-Social Assistance (SA) database with administrative health care data. MethodsDeterministic and probabilistic linkage methods were used to link the MCCSS-SA database (2003-2016) to the Registered Persons Database, a population registry containing data on all individuals issued a health card number in Ontario, Canada. Linkage rates were estimated, and the degree of record linkage and representativeness of the dataset were evaluated by comparing socio-demographic characteristics of linked and unlinked records. ResultsThere were a total of 2,736,353 unique member IDs in the MCCSS-SA database from the 1st January 2003 to 31st December 2016; 331,238 (12.1%) were unlinked (linkage rate = 87.9%). Despite 16 passes, most record linkages were obtained after 2 deterministic (76.2%) and 14 probabilistic passes (11.7%). Linked and unlinked samples were similar for most socio-demographic characteristics (i.e., sex, age, rural dwelling), except migrant status (non-migrant versus migrant) (standardized difference of 0.52). Linked and unlinked records were also different for SA program-specific characteristics, such as social assistance program, Ontario Works and Ontario Disability Support Program (standardized difference of 0.20 for each), data entry system, Service Delivery Model Technology only and both Service Delivery Model Technology and Social Assistance Management System (standardized difference of 0.53 and 0.52, respectively), and months on social assistance (standardized difference of 0.43). ConclusionsAdditional techniques to account for sub-optimal linkage rates may be required to address potential biases resulting from this data linkage. Nonetheless, the linkage between administrative social assistance and health care data will provide important findings on the social determinants of health.

Publisher

Swansea University

Subject

Information Systems and Management,Health Informatics,Information Systems,Demography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3