Validating the QCOVID risk prediction algorithm for risk of mortality from COVID-19 in the adult population in Wales, UK.

Author:

Lyons Jane,Nafilyan Vahé,Akbari Ashley,Davies Gareth,Griffiths Rowena,Harrison Ewen,Hippisley-Cox Julia,Hollinghurst Joe,Khunti Kamlesh,North Laura,Sheikh Aziz,Lyons Ronan,Torabi Fatemeh

Abstract

IntroductionCOVID-19 risk prediction algorithms can be used to identify at-risk individuals from short-term serious adverse COVID-19 outcomes such as hospitalisation and death. It is important to validate these algorithms in different and diverse populations to help guide risk management decisions and target vaccination and treatment programs to the most vulnerable individuals in society. ObjectivesTo validate externally the QCOVID risk prediction algorithm that predicts mortality outcomes from COVID-19 in the adult population of Wales, UK. MethodsWe conducted a retrospective cohort study using routinely collected individual-level data held in the Secure Anonymised Information Linkage (SAIL) Databank. The cohort included individuals aged between 19 and 100 years, living in Wales on 24th January 2020, registered with a SAIL-providing general practice, and followed-up to death or study end (28th July 2020). Demographic, primary and secondary healthcare, and dispensing data were used to derive all the predictor variables used to develop the published QCOVID algorithm. Mortality data were used to define time to confirmed or suspected COVID-19 death. Performance metrics, including R2 values (explained variation), Brier scores, and measures of discrimination and calibration were calculated for two periods (24th January–30th April 2020 and 1st May–28th July 2020) to assess algorithm performance. Results1,956,760 individuals were included. 1,192 (0.06%) and 610 (0.03%) COVID-19 deaths occurred in the first and second time periods, respectively. The algorithms fitted the Welsh data and population well, explaining 68.8% (95% CI: 66.9-70.4) of the variation in time to death, Harrell’s C statistic: 0.929 (95% CI: 0.921-0.937) and D statistic: 3.036 (95% CI: 2.913-3.159) for males in the first period. Similar results were found for females and in the second time period for both sexes. ConclusionsThe QCOVID algorithm developed in England can be used for public health risk management for the adult Welsh population.

Publisher

Swansea University

Subject

Information Systems and Management,Health Informatics,Information Systems,Demography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3