Identifying incident cancer cases in dispensing claims

Author:

Daniels Benjamin,Tervonen Hanna E,Pearson Sallie-Anne

Abstract

IntroductionDispensing claims are used commonly as proxy measures in pharmacoepidemiological studies; however, their validity is often untested. ObjectivesTo assess the performance of a proxy for identifying cancer cases based on the dispensing of anticancer medicines and estimate the misclassification of cancer status and potential for bias researchers may encounter when using this proxy. MethodsWe conducted our validation study using Department of Veterans’ Affairs (DVA) client data linked with the New South Wales (NSW) Cancer Registry and Repatriation Pharmaceutical Benefits Scheme data. We included DVA clients aged ≥65 years residing in NSW between July 2004 and December 2012. We matched clients with a cancer diagnosis to clients without a diagnosis based on demographic characteristics and available observation time. We used dispensing claims for anticancer medicines dispensed between July 2004 and December 2013 as a proxy to identify clients with cancer and calculated sensitivity, specificity, positive predictive values and negative predictive values compared with cancer registrations (gold standard), overall and by cancer site. We illustrated misclassification by the proxy in a cohort of people initiating opioid therapy. Using the proxy, we excluded people with cancer from the cohort, in an attempt to delineate people potentially using opioids for cancer rather than chronic non-cancer pain. ResultsWe identified 15,679 new cancer diagnoses in 14,112 DVA clients from the cancer registry and 62,663 clients without a diagnosis. Sensitivity of the proxy based on dispensing claims was 30% for all cancers and around 20% for specific cancers (range: 10-67%). Specificity was above 90% for all cancers. The dispensing proxy correctly identified 26% of people with a cancer diagnosis who initiated opioid therapy and failed to identify 74% those with a cancer diagnosis; the proxy was most robust for clients with breast cancer where 61% were correctly identified by proxy. ConclusionsDispensings of anticancer medicines as a proxy for people with a cancer diagnosis performed poorly. Excluding patients with evidence of anticancer medicine use from cohort studies may result removal of a disproportionate number of women with breast cancer. Researchers excluding or otherwise using anticancer medicine dispensing to identify people with cancer in pharmacoepidemiological studies should acknowledge the potential biases introduced to their findings.

Publisher

Swansea University

Subject

Information Systems and Management,Health Informatics,Information Systems,Demography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3