Affiliation:
1. TOKAT GAZIOSMANPASA UNIVERSITY, FACULTY OF ENGINEERING
2. TOKAT GAZİOSMANPAŞA ÜNİVERSİTESİ, TOKAT SAĞLIK YÜKSEKOKULU
3. ALANYA ALAADDIN KEYKUBAT UNIVERSITY, FACULTY OF ENGINEERING
4. TOKAT GAZIOSMANPASA UNIVERSITY
Abstract
In this study, the synthesis of folic acid conjugated silver nanoparticles (FA&AgNPs) was optimized. FA&AgNPs were synthesized by reduction of silver nitrate with folic acid, which is widely used to target folate receptors in cancer cells. Five independent variables (stirring speed, AgNO3 concentration, folic acid concentration, AgNO3 volume/folic acid volume, and temperature) that were effective on silver nanoparticle synthesis were determined. Based on the independent variables, an experimental plan consisting of 46 experiments was created using the Box-Behnken design (BBD). Nanoparticle formation, physical color change, UV-Vis absorption spectroscopy, Dynamic Light Scattering (DLS) analysis, and Fourier Transform Infrared (FTIR) analysis were evaluated. The mean particle size and zeta potential of FA&AgNPs produced under optimized conditions were measured as 207±4.3 nm and -51.6 mV±2.5, respectively. Cytotoxicity tests were performed to evaluate the anticancer activity of FA&AgNPs in breast cancer cell lines. The IC50 values for MDA-MB-231 breast cancer cells at 24 hours and 48 hours were 20.0 µg/mL and 16.9 µg/mL, respectively, and 26.3 µg/mL and 31.5 µg/mL for MCF-7 cells. The findings indicated that FA&AgNPs have the potential to be an effective anticancer agent in breast cancer cells.
Publisher
ALKU Fen Bilimleri Dergisi, Alanya Alaaddin Keykubat University
Subject
General Earth and Planetary Sciences