Optimizing the Synthesis of Folic Acid Conjugated Silver Nanoparticles by Box-Behnken Design to Target Breast Cancer Cells

Author:

SOYLU Safa Furkan1ORCID,ZIDAN Ahmed1ORCID,GÖKŞEN TOSUN Nazan2ORCID,KAPLAN Özlem3ORCID,GÖKÇE İsa4ORCID

Affiliation:

1. TOKAT GAZIOSMANPASA UNIVERSITY, FACULTY OF ENGINEERING

2. TOKAT GAZİOSMANPAŞA ÜNİVERSİTESİ, TOKAT SAĞLIK YÜKSEKOKULU

3. ALANYA ALAADDIN KEYKUBAT UNIVERSITY, FACULTY OF ENGINEERING

4. TOKAT GAZIOSMANPASA UNIVERSITY

Abstract

In this study, the synthesis of folic acid conjugated silver nanoparticles (FA&AgNPs) was optimized. FA&AgNPs were synthesized by reduction of silver nitrate with folic acid, which is widely used to target folate receptors in cancer cells. Five independent variables (stirring speed, AgNO3 concentration, folic acid concentration, AgNO3 volume/folic acid volume, and temperature) that were effective on silver nanoparticle synthesis were determined. Based on the independent variables, an experimental plan consisting of 46 experiments was created using the Box-Behnken design (BBD). Nanoparticle formation, physical color change, UV-Vis absorption spectroscopy, Dynamic Light Scattering (DLS) analysis, and Fourier Transform Infrared (FTIR) analysis were evaluated. The mean particle size and zeta potential of FA&AgNPs produced under optimized conditions were measured as 207±4.3 nm and -51.6 mV±2.5, respectively. Cytotoxicity tests were performed to evaluate the anticancer activity of FA&AgNPs in breast cancer cell lines. The IC50 values for MDA-MB-231 breast cancer cells at 24 hours and 48 hours were 20.0 µg/mL and 16.9 µg/mL, respectively, and 26.3 µg/mL and 31.5 µg/mL for MCF-7 cells. The findings indicated that FA&AgNPs have the potential to be an effective anticancer agent in breast cancer cells.

Funder

TÜBİTAK

Publisher

ALKU Fen Bilimleri Dergisi, Alanya Alaaddin Keykubat University

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3